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We formulate a momentum-shell renormalization-group �RG� procedure that can be used in theories con-
taining both bosons and fermions with a Fermi surface. We focus on boson-fermion couplings that are nearly
forward scattering, i.e., involving small momentum transfer �q� �0� for the fermions. Special consideration is
given to phase space constraints that result from the conservation of momentum and the imposition of ultra-
violet cutoffs. For problems where the energy and momentum scale similarly �dynamic exponent z=1�, we
show that more than one formalism can be used and they give equivalent results. When the energy and
momentum must scale differently �z�1�, the procedures available are more limited but a consistent RG
scheme can still be formulated. The approach is applicable to a variety of problems, such as itinerant-electron
magnets and gauge fields interacting with fermions.
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I. INTRODUCTION

Although the theory of scaling and renormalization has
profoundly affected our conceptual understanding of many-
body systems, its calculational framework is imperfect and
continually evolving. In the end, we are interested in how
couplings flow under changes of scale, but a variety of dis-
tinct procedures exist, each with its own advantages and
drawbacks. An incomplete list of the assortment of programs
includes the multiplicative renormalization-group �RG�, real-
space decimation, functional RG, exact RG, flow equations,
and various flavors of � expansion, such as the classic mini-
mal subtraction which expands around d=4, or expansions
around some other parameter, such as the deviation of the
range of the interaction from a suitable reference value. Each
method has its own limits of practicality, ease of use, and
range of problems to which it may be usefully employed.
Wilson’s momentum-shell approach1,2 is an especially popu-
lar method in the context of condensed-matter problems.
However, in the early 1990s a few people recognized3–5 that
the standard momentum-shell procedure must be modified
for problems involving a Fermi surface. A campaign soon
followed attempting to understand Fermi-liquid theory from
an RG perspective. An excellent and influential summary of
the pure-fermion RG can be found in Ref. 6.

Another indication that the RG for fermions required
more scrutiny came from the study of quantum criticality in
itinerant electron magnets. The usual Hertzian approach2

uses an auxiliary �Hubbard-Stratonovich� field to decouple
the fermion-fermion interaction, thus allowing fermions to
be completely integrated out. The resulting effective theory
is then expressed in terms of the remaining bosonic auxiliary
field, to which standard bosonic RG techniques can be em-
ployed. However, because the fermions are gapless, the pro-
cess of integrating them out may introduce nonanalyticities
in the couplings among the remaining bosonic modes.7,8 It
would therefore be important to devise an RG scheme ca-
pable of simultaneously handling both gapless bosons and
fermions with a Fermi surface.

Besides the critical itinerant magnets, a mixed RG formal-
ism for gapless fermionic-bosonic systems would be quite

useful for an assortment of problems. For example, in the
context of a gauge field coupled to fermions, several
authors9–12 have developed their own RG schemes for count-
ing dimensions in these mixed theories. All have in common
the subdivision of the Fermi surface into a large number of
patches but results vary and despite the intervening 15 years
since this pioneering work, little progress has been made.
The importance of the gauge-fermion problem is historically
linked to an interesting path to non-Fermi-liquid
behavior.13,14 More recently, effective gauge theories have
appeared in a number of additional contexts in condensed-
matter physics.15

We should mention in passing a growing body of work on
the functional RG which may be adapted for mixed boson-
fermion theories.16–21 This typically requires blending with
computational methods and may prove to be a useful frame-
work for understanding realistic material band structures.
Our aim here is rather more modest, which is to develop an
RG scheme for mixed theories with a high score in the “ease
of use” category. This was the chief virtue of the original
Wilsonian RG which could quickly identify the relevant and
irrelevant operators with minimal effort. One emphasis of
this paper will be to carefully consider how to extend Shan-
kar’s scheme6 to include bosons while maintaining the easy-
to-use spirit of the Wilsonian approach.

Our primary motivation to consider these issues came
from the context of magnetically ordered phases of some
itinerant systems. In the case of an antiferromagnetic state of
a Kondo lattice, the bosonic magnons, described by a quan-
tum nonlinear sigma model, are coupled to the fermionic
quasiparticles near a Fermi surface. In this problem, energy
and momentum scale the same way; the dynamic exponent
z=1. The ferromagnetic counterpart features z=3. The RG
analysis plays an essential role in understanding the Fermi
surfaces in these systems and has been briefly described in
our earlier works.22–24 The purpose of the present work is to
explain the details of the method in considerable detail with
the hope that the method will be adapted to problems in new
physical contexts.

The remainder of the paper is organized as follows. In
Sec. II we remind the reader of the essential points of the
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bosonic Wilson-Hertz scaling. Section III quickly moves on
to discuss scaling in fermionic systems, largely paraphrasing
what has already been done but emphasizing a slightly dif-
ferent perspective. Section IV describes a method to properly
scale in mixed theories when energy and momentum can be
given the same scaling dimension, i.e., when z=1. This is
closest in spirit to the Shankar approach but cannot be gen-
eralized to z�1. Some of these problems are discussed in
Secs. V and VI. In Sec. VI we present an alternative method
for arbitrary z that is perhaps less intuitive than that of Sec.
IV but has the advantage of being generalizable to z�1
while at the same time yielding identical results when z=1.

II. BOSON SCALING

The problem we are concerned with can be decomposed
into bosonic, fermionic, and interaction terms,

S = S f + Sb + S3
bf . �1�

The bosonic and fermionic pieces can be further divided into
quadratic and quartic pieces,

Sb = S2
b + S4

b, �2�

S f = S2
f + S4

f . �3�

Theories based upon Sb or S f alone have already been sub-
jected to momentum-shell RG analyses; see, for example,
Refs. 1, 2, and 6. In this section, we review the Wilson-Hertz
scaling procedure for bosons, so we are only concerned with
Sb.

In the most general case, the quadratic part of the action
can take several different forms depending on the value of z.
For example,

S2
b�z = 1� =� ddqd����q2 + �2�� ,

S2
b�z = 2� =� ddqd����q2 + ��� ,

S2
b�z = 3� =� ddqd����q2 +

�

q
�� ,

S2
b�z = 4� =� ddqd����q2 +

�

q2�� . �4�

The bosons might represent acoustic phonons, magnons,
photons, or some collective mode of an underlying fermionic
theory that results after “integrating out” the fermions with
an auxiliary field. At this point, we need not be specific. All
that matters is that we must design the RG scheme in such a
way that S2

b remains invariant. The Wilsonian RG for bosons
is well known1 so we only review those elements crucial to
the comparisons we wish to make later with the fermionic
RG.

Consider a d-dimensional integral in momentum space
with a cutoff to high energy and therefore large-q modes; this

is denoted by �. Let us separate out a thin shell of high-
energy modes in the range � /s�q��, where s�1,

��

ddq �� dd−1�q��
0

�

qd−1dq

=� dd−1�q���
0

�/s

qd−1dq + �
�/s

�

qd−1dq	 .

Here, q�
q� 
 is the radial coordinate in �hyper�spherical co-
ordinates and dd−1�q� represents the measure for integration
over all angular variables in q� space. We have ignored fac-
tors of 2�. Mode elimination amounts to simply throwing
away the shell integral. To regain the original form of the
action only a trivial rescaling of the radial coordinate is
needed,

q� � sq . �5�

This defines the scaling dimension of momentum. In the cus-
tomary notation, we use square brackets to denote the scaling
dimension of any quantity according to

A� = s�A�A , �6�

where A� is measured in units s�A� times smaller than the
units of A. We call �A� the scaling dimension of A. This
notation differs from another frequent convention which may
claim, for instance, �volume�=L3, where L is some length
scale. We prefer our notation since it means a coupling g is
relevant when �g��0, irrelevant when �g��0, and marginal
when �g�=0.

In this notation, an equivalent statement to Eq. �5� is sim-
ply

�q� = 1. �7�

Using this form of momentum scaling in the integral leads to

� dd−1�q��
0

�

s−�d−1�q�d−1s−1dq� = s−d��

�ddq��.

We conclude that the scaling dimension of the measure is
given by

�ddq� = d�q� = d . �8�

Note that rescaling the radial variable, q, is the same as
rescaling all the components of q� since q=
�	

dq	
2 . For this to

be consistent with q�=sq, we must have q	=sq	 for all com-
ponents 	� �x ,y ,z , . . .�. This is an important difference from
the fermionic case to be discussed later and results from the
simple fact that the coordinate origin here is a single point
rather than an extended surface.

Let us apply this mode elimination and rescaling to the
quadratic part of the boson action, taking the case z=3 as an
example,
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S2
b�z = 3� = ��/s

ddqd�
�
2�q2 +
�

q
� + �high energy�

� s−d�q�−�����

ddq�d��
��s−�q�q��,s−���i���
2


 �s−2�q�q�2 + s−���+�q���

q�
� , �9�

where we discarded high-energy modes and used Eq. �5� and
���s����. We wish to scale the terms in the parentheses
identically, so we must have −2�q�=−���+ �q� thus fixing the
relationship between the scaling dimensions of energy and
momentum,

�q� = ���/z , �10�

where our example considered z=3 explicitly.
The final step is wave-function renormalization which can

be implemented by defining a new field �� according to

���q�,i��� � s−��d+2��q�+����/2��s−�q�q�,s−���i��� . �11�

Equivalently, we might say that the boson field has a scaling
dimension given by

��� = −
�q�
2

�d + z + 2� , �12�

where we used ���=z�q�. Although customary Eq. �12� is
slightly misleading. The replacement of � by s−����� in ana-
lyzing interaction terms should only be done when the argu-
ments of the field transform according to Eq. �11�. Equation
�61� provides an example where the arguments of the field
are transformed in a very different fashion. From Eq. �11� we
see that the boson field appears to take the form of a gener-
alized homogeneous function. We do not delve into this issue
further but merely note that Eq. �11� is a very specific type of
substitution that needs to be implemented in this strict form.
Scale invariance of S2

b has imposed a transformation property
on the field, specified in Eq. �11�, under the particular coor-
dinate transformation q�=s�q�q and ��=s���� with �q�
= ��� /z.

Now that we know how to scale momentum from Eq. �7�,
energy from Eq. �10�, and the field from Eq. �11�, we are
ready to analyze the four-boson interaction term,

S4
b = ub� ddq4d�4ddq3d�3ddq2d�2ddq1d�1


��q�4,i�4���q�3,i�3���q�2,i�2���q�1,i�1�


��� − 
q�4
���� − 
q�3
���� − 
q�2
���� − 
q�1
�


��d��q�4 + q�3 − q�2 − q�1����4 + �3 − �2 − �1� . �13�

The � functions enforce the conservation of energy and mo-
mentum while the � functions define the cutoffs for the
effective-field theory �in principle, energy cutoffs should also
be written but this is understood�.

To determine the scaling dimension of ub at the tree level,
we first separate the integrations into low- and high-energy
modes �i.e., ���− 
q� i
�=��� /s− 
q� i
�+��
q� i
−� /s����
− 
q� i
��, then discard the high-energy shell. There is some

freedom in choosing the shape of the shell which can take
some curious forms for the purpose of simplifying calcula-
tions. See the discussion by Hertz.2

After rescaling according to Eqs. �7�, �10�, and �12�, we
find

S4
b = s4−d−zub� ddq3�d�3�d

dq2�d�2�d
dq1�d�1�


��q�4�,i�4����q�3�,i�3����q�2�,i�2����q�1�,i�1��


��� − 
q�4�
���� − 
q�3�
���� − 
q�2�
���� − 
q�1�
�


��d��q�4� + q�3� − q�2� − q�1�����4� + �3� − �2� − �1�� , �14�

which tells us that ub��s4−d−zub, or equivalently

�ub� = 4 − �d + z� . �15�

This yields a quick way to determine when the four-boson
interaction term ub��4 is relevant or irrelevant based on the
dimensionality of the problem and the value of z. Histori-
cally, this result provided some early intuition about quantum
phase transitions which can behave like classical phase tran-
sitions but in a different number of effective dimensions:
deff=d+z. Although the theory was originally devised to
address questions about itinerant quantum critical
magnets,2,25,26 some problems have been encountered with
this approach.7,8 Part of the problem could be that the theory
is completely bosonic, despite the underlying fermionic na-
ture of the system. It is therefore desirable to develop an RG
formalism that includes fermions with a Fermi surface.

III. FERMION SCALING: SHANKAR’S RG

For fermions, the quadratic part of the action is given by

S2
f =� ddKd�
̄�i� − �K� �
 . �16�

To define a scaling scheme that leaves S2
f scale invariant, we

now review the formulation of the fermionic RG.6 We shall
use Shankar’s notation and label momenta measured with
respect to the Brillouin-zone center with a capital letter K�
= �Kx ,Ky , . . .�. In contrast to the bosonic case, low-energy
modes live near an extended surface �the Fermi surface�
rather than a single point �the Brillouin-zone center�. For a
spherical Fermi surface, a high-energy cutoff can be imple-
mented on K� integrals as follows:

��

ddK �� dd−1�K��
KF−�

KF+�

Kd−1dK ,

where � is an ultraviolet cutoff but we still insist ��KF.
Here, dd−1�K� represents the measure for integration over all
angular coordinates in K� space while K�
K� 
 is the radial
coordinate. Usually, we work at fixed fermion density which,
by Luttinger’s theorem, dictates that we design our scaling
scheme in such a way that the Fermi volume remains invari-
ant. To preserve the Fermi surface under rescaling we cannot
simply scale the radial coordinate as we did in the bosonic
case. To see this, observe that after mode elimination the
expression we wish to rescale is given by
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��/s

ddK �� dd−1�K��
KF−�/s

KF+�/s

Kd−1dK . �17�

Clearly, no simple rescaling of K will return the integral to
its original form. This is the principle disparity between the
fermionic and bosonic RG. To make progress we define the
lower case letter k�
K� 
−KF. Note that k=0 corresponds to

�K� =�K� −�=0 since �K� =
K2−KF

2

2m �vF�K−KF�=vFk. Small k
corresponds to low energy whereas small K does not. Such a
change in variables greatly facilitates rescaling,

� dd−1�K��
−�/s

�/s

�KF + k�d−1dk

= KF
d−1� dd−1�K��

−�/s

�/s �1 +
k

KF
�d−1

dk

� KF
d−1� dd−1�K��

−�/s

�/s

dk . �18�

We have neglected certain terms above for two reasons: they
are of order � /KF relative to what has been kept and they are
less relevant in the RG sense. To see the latter, note that the
integral can be restored to its original form with the simple
rescaling k�=sk. This determines the scaling dimension

�k� = 1. �19�

Note that the variable k is not a vector, nor is it a radial
coordinate since it can take negative values. Later, we will
discuss another scheme, which we call “patching,” that de-
composes the momenta into components parallel �k��� and
perpendicular �k�� to the Fermi-surface normal. To make
later contrast with the patching scheme of Sec. VI, which
uses local coordinates for each patch, we will call the present
approach the “global coordinate” scheme.

To further emphasize the dissimilarity between the fermi-
onic and bosonic cases, observe that after the rescaling of Eq.
�19�,

��/s

ddK � KF
d−1� dd−1�K��

−�

�

s−1dk� = s−1��

�ddK��,

�20�

which implies that, effectively,

�ddK� = 1. �21�

This stands in sharp contrast to the bosonic case in Eq. �8�.
Here, the angular variables are truly untouched after rescal-
ing which is necessary to maintain the Fermi surface. Unfor-
tunately, the straightforward transformation k�=sk does not
translate into a simple transformation on the components of
K� . Care must therefore be exercised to write all expressions
in terms of k before the scaling procedure can begin. For
example, after mode elimination and rescaling of energy and
momentum, the quadratic part of the fermionic action is
given by

S2
f � s−3� dk�d��
̄�KF + s−1k�,s−1i���


 �s−���i�� − vFs−�k�k��
�KF + s−1k�,s−1i��� .

If we wish to scale both of the terms inside the square brack-
ets identically, we must choose

�k� = ��� , �22�

thus fixing the relationship between the scaling dimensions
of energy and momentum. For convenience we can set this
value equal to 1, as in Eq. �19�. Compare this to Eq. �10�.

In order to make S2
f invariant to the RG transformation we

must demand that the fermion field obeys

s−3/2
�KF + s−1k�,s−1i��� = 
��KF + k�,i��� , �23�

where we have not explicitly written the dependence of 
 on
angular variables since these do not scale. Equation �23� tells
us two important things. First, the dimension of the fermion
field is simply

�
� = − 3/2. �24�

Second, the RG transformation of the fermion field does not
take the form of a generalized homogeneous function as was
the case for the bosonic field; see Eq. �11�. The momentum
argument of the fermion field K� has a magnitude equal to the
Fermi wave vector plus a small deviation: K=KF+k. Only
the deviation k scales while KF remains constant. This im-
portant difference from the bosonic case will be discussed
further in Sec. V.

The story so far seems relatively elementary but the true
subtleties materialize when we try to determine the dimen-
sion of the 
4 coupling function uf based on the dimension
assignments required to make S2

f scale invariant. The quartic
part of the action can be written as6

S4
f = �

i=1

4 ��

ddKi� d�i�̄
�d��K� 1 + K� 2 − K� 3 − K� 4�


���1 + �2 − �3 − �4�



̄�4�
̄�3�
�2�
�1�uf�4,3,2,1� . �25�

The � functions explicitly enforce the conservation of energy
and momentum �up to a reciprocal-lattice vector�. We might
integrate one of the energies and momenta, say �K� 4 ,�4�,
against the delta function to yield an integral over three in-
dependent sets �K� 1 ,�1�, �K� 2 ,�2�, and �K� 3 ,�3�,

S4
f = �

i=1

3 ��

ddKi� d�i
̄�1 + 2 − 3�
̄�3�
�2�
�1�


uf�1 + 2 − 3,3,2,1� �wrong� . �26�

But this expression is not quite right. The problem is that not
all momentum-conserving processes should be included in
the low-energy effective-field theory. We must respect the
cutoff imposed on the quadratic part of the action, which
only allows excursion into states within a distance �� of the
Fermi surface. Imposing a cutoff amounts to constraining the
momentum integrals. Until now, we have implemented the
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cutoff constraints by writing them explicitly in the limits of
integration, but let us re-express them as

��

ddKi =� ddKi��� − 
ki
� , �27�

where, as usual, ki�
K� i
−KF. With all momentum integrals
written in this way, we can safely use the � functions to
eliminate one variable, say K� 4 and �4,

S4
f = �

i=1

3 � ddKi� d�i
̄�1 + 2 − 3�
̄�3�
�2�
�1�


uf�1 + 2 − 3,3,2,1���� − 
k1
����

− 
k2
���� − 
k3
���� − 
K4
�

= �
i=1

3 ��

ddKi� d�i
̄�1 + 2 − 3�
̄�3�
�2�
�1�


uf�1 + 2 − 3,3,2,1���� − 
K4
� . �28�

The constraints on K� 1, K� 2, and K� 3 have been put back in the
limits of integration, but we have the additional constraint

K4
��, where

K4 � 
K� 3 − K� 2 − K� 1
 − KF. �29�

Once we have conserved momentum, K� 4 is no longer an
independent variable, so we use the notation K4 to represent
the combination of variables specified in Eq. �29�.

We can implement the constraint embodied in ���
− 
K4
� in a number of ways. One way is to allow K� 1 and K� 2
to range anywhere inside the annuli defined by −��k1 ,k2

�� but restrict K� 3 as appropriate to satisfy 
K4
��. The
outcome of a proper phase space analysis shows that once K� 1

and K� 2 have been chosen, the angle for K� 3 is highly
constrained.6

To see this in more detail, observe that to leading order in
� /KF,

K4 � KF�
�� 
 − 1� , �30�

where �� � K̂1+ K̂2− K̂3, and where the K̂i are unit vectors,
each pointing in the direction of K� i. Note that �� is not itself
a unit vector since


�� 
 = 
2�3

2
+ K̂1 · K̂2 − K̂1 · K̂3 − K̂2 · K̂3	1/2

, �31�

a result we will use in Sec. V. After mode elimination, the
momentum integrals become

�
i=1

3 � ddKi���/s − KF

�� 
 − 1
�

= �
i=1

3 � ddKi��� − sKF

�� 
 − 1
� . �32�

Simply rescaling ki�=ski is not sufficient to regain the origi-
nal form of the action for generic values of ki. The obvious

snag is the annoying way the � function transforms. For
general values of the momenta ki, the � function is clearly
not invariant to the renormalization-group transformation.
Consequently, we are not technically entitled to compare the
coupling before and after, so we do not know the RG flow.
The way out of this dilemma is first to understand the cir-
cumstances under which the � function is invariant, and then
to see what might be happening for more generic cases by
considering a soft cutoff.

First, note that when 
�� 
=1 �i.e., K4=0� the � function is
always form invariant since ����=��� /s�. The condition

�� 
=1 can be fulfilled in three different ways,

�i� K� 1 = K� 3 and K� 2 = K� 4, �33�

�ii� K� 2 = K� 3 and K� 1 = K� 4, �34�

�iii� K� 1 = − K� 2 and K� 3 = − K� 4. �35�

For these values of the momenta, the rescaling ki�=ski works
flawlessly because the � function is form invariant under
these restrictions. We are now allowed to compare the cou-
pling before and after. Since �dk1dk2dk3d�1d�2d�3�=6 and
�
4�=−6, we conclude that, at the tree level, the most rel-
evant pieces of uf are marginal. This important result is at the
heart of Fermi-liquid theory but is expressed by the simple
equation,

�uf� = 0. �36�

In Shankar’s notation, cases �i� and �ii� correspond to uf
= �F and case �iii� uf =V. It has also been shown6 that case
�i� remains marginal beyond the tree level, while loop cor-
rections in case �iii� lead to a marginally relevant coupling
for certain angular momentum channels, indicative of the
BCS instability.

Let us understand in more detail the circumstances under
which the � function is always form invariant. In particular,
we want to stress that the condition K4=0 is conceptually
different from the limit � /KF→0. To see this, let us rewrite
the equation K4=0 as follows:


K� 3 − K� 2 − K� 1
 = KF. �37�

Note that Eq. �29� is slightly more accurate than Eq. �30�.
Next, define P� �K� 1+K� 2 which obviously gives


K� 3 − P� 
 = KF. �38�

This says that the vector joining the tip of K� 3 to the tip of P�
must have magnitude precisely equal to KF. Figure 1 depicts
the situation. Geometrically, the choices available to K� 3 once
K� 2 and K� 1 have been selected are given by the thick gray
lines in the figure. Notice that while k3 can still take any
values −��k3�� within the annulus, the angle of K� 3 has
become highly constrained. However, it is clear that even
when K4=0 the value of � /KF can still be nonzero.

We now know the dimension �uf� when we restrict to
K4=0. However, the three cases corresponding to K4=0 con-
stitute only a small portion of �K� 1 ,K� 2 ,K� 3� space. To see what
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happens to the coupling function u�3,2 ,1� for other values
of momenta, Shankar had the insight to employ a soft cutoff:
���− 
ki
��e−
ki
/�. Using this device, the rescaled cutoff for
arbitrary ki values becomes

��� − sKF

�� 
 − 1
� � e−sN�

�� 
−1
 = e−N�

�� 
−1
e−�s−1�N�

�� 
−1
,

where we have defined the large parameter N��KF /� �gen-
erally, we have the hierarchy k���KF, which means N�

�1�. We choose to write the cutoff in this way because then
clearly when 
�� 
=1, corresponding to the three cases listed
above, the cutoff becomes a simple factor of unity. For any

�� 
�1, which means all other values of the ki, the cutoff →0
in the limit N�→� provided s�1. While we do not know
how the coupling function u�3,2 ,1� scales for values of the
momenta where 
�� 
�1, it does not matter because these
couplings will be exponentially suppressed in the limit
1 /N�=� /KF→0.

Note that the condition 
�� 
=1 is simply the statement that
K4 should not scale. Indeed, it means K4=0. Only when

�� 
=1 is the relation K4�=sK4 satisfied, albeit trivially. In
fact, that is how we identified the condition 
�� 
=1, being the
only combination of K� 3, K� 2, and K� 1, where ���− 
K4
� can
be rescaled to take its original form after mode elimination.
This useful interpretation will be used again later when we
extend the formalism to include bosons.

Before moving on, we need to make another observation
about the pure-fermion RG that will be important to later
generalizations. We have shown how to find the dimension
of the coupling function uf�3,2 ,1� for those values of mo-

mentum that satisfy K4=0 �i.e., 
�̂
=1� corresponding to for-
ward, exchange, and Cooper scattering. To be pedantic, this
phase space restriction should be incorporated into the form
of the coupling,

S4
f = �

i=1

3 ��

ddKi� d�i
̄�1 + 2 − 3�
̄�3�
�2�
�1�


uf�1 + 2 − 3,3,2,1���� − 
K4
���K4� . �39�

Note that ����=1 always since ��0. As seen in Fig. 1, the
insertion of ��K4� does not affect the freedom of K� 1 or K� 2 at
all, nor does it affect the magnitude of K� 3 so long as −�

� 
K� 3
−KF��. However, the angle of K� 3 is highly restricted
to the two gray regions of the figure as a resulting of insert-
ing ��K4�. We may therefore implement the constraint �in
d=2� by

��K4� → ��
�� 
 − 1�/KF = ����3 − �1� + ���3 − �2��/KF.

�40�

A similar expression can be written in d=3. Since angles do
not scale in this scheme, whether or not we insert this factor
into S4

f will have no effect on the value of the dimension of
uf. Shankar’s result of marginality, �uf�=0, still holds. We
mention this issue because generalizing the method to in-
clude bosons will not result in so happy a circumstance. We
turn to this case next.

IV. BOSON+FERMION SCALING

We are finally ready to incorporate bosons. Consider the
following interaction term involving two fermions and one
boson:

S3
bf =� ddK1ddK2ddqg�K� 1,K� 2,q��
̄K� 2


K� 1
�q�


��d��K� 2 − K� 1 − q����� − 
k1
���� − 
k2
�


��� − 
q� 
� , �41�

g is the coupling function which plays the same role as uf in
the four-fermion problem. �For definiteness, we focus our
discussion on Yukawa type of fermion-boson coupling, but
our method can be readily extended to the general cases of “x
fermion-y boson” couplings.� For simplicity we have sup-
pressed frequency integrals and assumed �b�� f ��. To
conserve momentum we have two choices: use the � function
to eliminate a fermionic momentum K� i or the bosonic mo-
mentum q� . This gives either

��

ddKddq�
̄K� +q�
K� �q�g�K� ,q����� − 
K2
�� �42�

or

��

ddK1ddK2�
̄K� 2

K� 1

�K2−K1
g�K� 2,K� 1���� − 
Q� 
�� ,

�43�

where some of the cutoff constraints have been put back in
the limits of integrations, and where we have defined

K2 � 
K� + q� 
 − KF, �44�

must stay within the annulus

must be a point on this circle

FIG. 1. Once K� 1 and K� 2 have been chosen the conservation of
momentum and the requirement that all K� i respect the cutoff of the
field theory strongly constrains the phase space available to K� 3.
Shown here is the limit K4=0. Even in this limit, there is some
flexibility in the choices available to K� 3, as depicted by the thick
gray lines. While the magnitude of k3 can still fall anywhere in the
range −��k3��, the angles available to K� 3 are highly limited. If
we were to further take the limit � /KF→0, the gray lines would
shrink to points. Note that P� is defined as the sum of K� 1 and K� 2 but
the latter are not drawn to avoid clutter.
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Q� � K� 1 − K� 2. �45�

This is analogous to what we did for the pure-fermion prob-
lem; see Eqs. �28� and �29�. Note that because we integrated
against the delta functions, momentum and energy are al-
ready explicitly conserved. In Eq. �42�, K� 2 is no longer an
independent variable, so we use the symbol K2 to represent
the combination of variables specified in Eq. �44�. Likewise,
q� is not an independent variable in Eq. �43�, so we use Q� as
shorthand for the momentum transfer, as specified in Eq.
�45�. This mirrors the development of the pure-fermion case.

Unlike the pure-fermion problem, we now appear to have
two different choices for expressing the boson-fermion cou-
pling. Equation �42� involves the boson-fermion coupling
function g�K� ,q�� while Eq. �43� contains g�K� 2 ,K� 1�. We defer
a discussion of the resolution of this choice to Sec. V. Here,
we simply point out that a consistent scheme can only be
found for Eq. �42� and we adopt this choice for the remain-
der of this section.

Although momentum is conserved, just like the pure-
fermion case, not all momentum conserving processes are
allowed because some might fall outside the high-energy cut-
offs. We must further restrict the coupling function g with the
constraint ���− 
K2
�. Unfortunately, this quantity only
scales in a simple way when z=1. Let us briefly explain the
problem.

Recall from the form of S2
f that we have the relation �k�

= ��� while S2
b demands �q�= ��� /z for general values of z

�see Eqs. �10� and �22��. In addition, since we want to scale
fermions and bosons at the same time, we choose to scale the
energies the same way, that is: ���= ���. For convenience, we
set the scaling dimension of energy to unity: ���= ���=1.
Any other value would change all scaling dimensions by the
same multiplicative factor but their relative dimensions
would be unaffected. Using this prescription we find

��� = �k� = ��� = 1,

�q� = ���/z =
1

z
,

�
� = −
3

2
,

��� = −
d + z + 2

2z
. �46�

Mode elimination and rescaling according to this scheme
leads to the following interaction term �we reinstate the en-
ergy integrals�:

S3
bf = sz+2−d/2zg��

ddq�dk�dd−1�K� d��d��
̄�
���


���/s − 
K2
� . �47�

The reason why we have � /s rather than � /s1/z is because
this constraint comes from the restriction on the momentum

integration of k2�
K� 2
−KF in Eq. �41�, which scales like a
fermion.

Let us rewrite the expression involved in the � function,


K2
 = 
K� + q� 
 − KF = ��KF + k�2 + q2

+ 2�KF + k�q cos �Kq�1/2 − KF

� KF�1 +
2

KF
�k + q cos �Kq�	1/2

− KF

� k + q cos �Kq, �48�

which is valid to leading order in � /KF, and where

cos �Kq = K̂ · q̂ �49�

��cos��K − �q�
cos �K cos �q + sin �K sin �q cos��K − �q�� �50�

in d=2 and d=3, respectively. Equation �47� now becomes

S3
bf = sz+2−d/2zg��

ddq�dk�dd−1�K� d��d��
̄�
���


 ���/s − 
k + q cos �Kq
�

= sz+2−d/2zg��

ddq�dk�dd−1�K� d��d��
̄�
���


 ��� − 
k� + s�z−1�/zq� cos �Kq
� , �51�

where k�=sk, q�=s1/zq, ��=s�, and ��=s�. Clearly, for ge-
neric values of z the � function does not return to its original
form after the renormalization-group transformation. We
should be pleased, however, that in the special case z=1, the
� function is form invariant,

���/s − 
K� 2
� � ���/s − 
k + q cos �Kq
�

= ��� − s
k + q cos �Kq
�

= ��� − 
k� + q� cos �Kq
� . �52�

The boson-fermion coupling can now be written as

S3
bf = s�3−d�/2g��

ddq�dk�dd−1�K� d��d��
̄�
���


��� − 
k� + q� cos �Kq
� �53�

and we can identify

g� � s�3−d�/2g , �54�

which is equivalent to

�g� = �3 − d�/2. �55�

This is one of the central results of this paper. The coupling
is marginal in d=3 and relevant in d=2. Of course, this
result depends on the choice of field dimensions; Eq. �46�
with z=1. In application to an antiferromagnetic Kondo lat-
tice, we have previously developed a model where the boson
dimension is −d �rather than Eq. �46�� and used the scheme
explained here to show that the boson-fermion coupling is
exactly marginal in that case.22
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Equation �55� is only valid when z=1 because only then
is the �-function form invariant. What can be done when z
�1? This question is particularly pertinent to the contro-
versy surrounding the renormalization of a gauge field
coupled to a fermion with a Fermi surface.9–12 It is also ger-
mane to the ferromagnetic phase of heavy-fermion
systems.24 Section VI will present a different scheme that is
applicable to problems with arbitrary values of z and also
reproduces Eq. �55� when z=1. Here, we merely explain why
the present scheme fails when z�1.

We have actually already seen the problem in Eq. �51�,
where it is obvious that the � function is not form invariant.
This is similar to the dilemma we encountered in the pure-
fermion problem, as seen in Eq. �32�. To make progress, we
try the same strategy used in the pure-fermion problem
where we restricted our consideration to the phase space
where the � function does scale perfectly. We did so by
demanding K4=0 �or 
�� 
=1� in S4

f , which can be imple-
mented by simply inserting ��K4�. Here, the analog of that
additional constraint is K2=0. This new condition can also
be written as


K� + q� 
 = KF. �56�

Thus, besides staying within their respective cutoffs, the
choices available to K� and q� , when K2=0, are restricted in
such a way that their sum vector must sit precisely on the
Fermi surface. Once K� is chosen, q� is obligated to connect
K� +q� to the Fermi surface thus limiting its permissible mag-
nitudes and angles quite severely. This is depicted in Fig. 2.

Under the restriction K2=0, the boson-fermion coupling
can be written as

S3
bf = sz+2−d/2zg��

ddq�dk�dd−1�K� d��d��
̄�
���


���/s − 
K2
���K2� �57�

=sz+2−d/2zg��

ddq�dk�dd−1�K� d��d��
̄�
���


��k� + s�z−1�/zq� cos �Kq� . �58�

This should be compared with Eq. �39�. In the pure-fermion
case, we showed there that whether or not we insert ��K4�
makes no difference to the value of �uf� because ��K4� is
����3−�1� or ����3−�2�, which has zero scaling dimen-
sion. Furthermore, this additional constraint is of a nonsin-
gular nature.

In contrast, for the boson-fermion coupling in Eq. �58�,
the insertion of ��K2� involves a dimensionful quantity. If we
were to integrate against ��K2� and eliminate �q as suggested
by Fig. 2, we would induce an additional 1/momentum factor
in violation of the RG edict that the coupling be a nonsingu-
lar function of momentum. More intuitively, Fig. 2 shows
that imposing the constraint K2=0 singles out an unrealistic

sort of coupling that glues the outgoing fermion 
̄K� +q� to the
Fermi surface regardless of the value of K� or q� . This no
longer represents a generic forward scattering process and is
of no interest to us. How to correctly capture a generic for-
warding scattering process will be discussed in Sec. VI.

At this point, a few issues are worth emphasizing.
�1� Since we integrated against the delta functions in Eq.

�41�, energy and momentum are explicitly conserved.
�2� The quantity K2 is not a free variable and it does not

necessarily scale in the same way as bosonic or fermionic
momenta. This is consistent with the nonscaling of K4 in the
pure-fermion problem when 
�� 
�1. Only when z=1 does
K2, and thus the constraint ���− 
K2
�, scale in a simple
way.

�3� In this scheme, all components of q� scale the same
way. In particular, �ddq�=d /z=d. At the same time, only fer-
mionic momenta in the direction normal to the Fermi surface
scale.

�4� Here, k is not a vector. It does not have parallel or
perpendicular components as discussed in certain patching
schemes. For more on the patching scheme, see Sec. VI.

�5� Although the RG scheme developed in this section
does not work for general values of z, it is perfectly well
suited to the special case z=1.

�6� Figure 2 gives us an important hint about what may be
happening for z�1. Since k�=sk and q�=s1/zq, we know that
after several iterations of the RG, the deviation of K� from the
Fermi surface will be much smaller than the magnitude of q� ,
i.e., k�q. As a result q� will tend to point in a direction
perpendicular to K� , which means it will be very nearly tan-
gent to the Fermi surface. In this way, it may seem as if
bosonic momenta scale anisotropically in a local coordinate
system defined with respect to the direction determined by a
fixed K� . This important observation will be developed more
fully in Sec. VI when we devise a scheme suitable to z�1.

V. CHOICE OF MOMENTUM INTEGRATION

Before moving on to the general case z�1, in this section
we resolve a seeming ambiguity for the scheme we devel-
oped in the previous section. As we found in Eqs. �42� and

FIG. 2. K� must stay within the annulus while q� must stay inside
the little circle of radius �. Under the restriction K2=0, the sum
K� +q� must sit precisely on the Fermi surface. The only phase space
that satisfies K2=0 is the thick gray line which represents a small
patch on the Fermi surface of size O��d−1�. Clearly, the limit K2

=0 is not the same as � /KF=0 since the latter would shrink the
gray patch to a point.

SEIJI J. YAMAMOTO AND QIMIAO SI PHYSICAL REVIEW B 81, 205106 �2010�

205106-8



�43� there are two ways to express S3
bf in momentum space.

We have already shown in detail that making the choice in
Eq. �42� can yield a consistent RG prescription. Now we will
show why the alternative decomposition

��

ddK1ddK2�
̄K� 2

K� 1

�K2−K1
g�K� 2,K� 1���� − 
Q� 
��

is not an appropriate starting point to determine the scaling
dimension of the boson-fermion coupling. The problem is
that the argument of the boson field, Q� �K� 1−K� 2, does not
transform homogeneously, so we do not know what dimen-
sion to assign to the boson itself. To see this, write each
fermion momentum vector in terms of a direction and a de-

viation from the Fermi surface: K� i= �KF+ki�K̂i. This gives


Q� 
 = �K1
2 + K2

2 − 2K1K2 cos �12�1/2

= ��KF + k1�2 + �KF + k2�2

− 2�KF + k1��KF + k2�cos �12�1/2

� KF

2��1 − cos �12��1 +

k1 + k2

KF
�	1/2

� KF

2�1 − cos �12��1 +

k1 + k2

2KF
� , �59�

which is true to leading order in 1 /N�, and where

cos �12 = K̂1 · K̂2

� �cos��1 − �2�
cos �1 cos �2 + sin �1sin �1 cos��1 − �2� ,

�
�60�

for d=2 and d=3. In Eq. �23� we committed to a specific
prescription in making S2

f scale invariant where angular com-
ponents of the momentum do not scale. We therefore cannot
allow angles to scale in S3

bf either. Using the specific pre-
scription in Eq. �46� determined by the quadratic parts of the
action we find

S3
bf = ��

s−1dk1�s
−1dk2�s

−1d�1�s
−1d�2��s3/2
̄��KF

+ k2�,i�2��s
3/2
��KF + k1�,i�1��


��KF

2�1 − cos �12��1 +

k1� + k2�

2sKF
	,

s−1i�2� − is−1�1��g�2,1����/s1/z − 
Q� 
�	 , �61�

where

���/s1/z − 
Q� 
� � ��� − s1/zKF

2�1 − cos �12�


�1 +
k1� + k2�

2sKF
	� . �62�

Notice that in Eq. �61� the fermion fields are primed whereas
the boson field is not.

There are two problems. First, the � function does not
return to its original form, making it impossible to compare
the flow of the coupling function before and after the RG
transformation. This is the same problem we encountered in
the pure-fermion case of Sec. III and the other boson-fermion
prescription from Sec. IV.

Second, we have a new dilemma, which is that we do not
know how the � field transforms under the change in argu-
ment in Eq. �61�. All we know from Eq. �11� is that

���q�,i��� � s−�d+z+2�/�2z���s1/zq,si�� , �63�

which states that the boson scales in a �generalized� homo-
geneous fashion. If we transform the boson arguments in a
nonhomogeneous way, as in Eq. �61�, we are not guaranteed
that such a coordinate transformation will induce a simple
multiplicative prefactor. Note that the mathematical require-
ment that the boson field transform homogeneously means
that the relative angle between the incoming and outgoing
fermions must be allowed to scale. Said another way, when
the magnitude of q� scales, the angle of K� 2= �K� 1+q�� must
change. However, when we choose to work in representation,
Eq. �43�, all momenta are fermionic which forces the wrong
type of rescaling on the boson field.

Thus, we cannot adopt the representation in Eq. �43�, be-
cause, first, the � function is not form invariant, and second,
it forces a nonhomogeneous coordinate transformation on the
boson field. How might we try to remedy these two prob-
lems? We could attempt the same strategy that worked in the
pure-fermion case where we restricted our consideration to
K4=0; see Eqs. �33�–�35�. However, when both bosons and
fermions are present this tactic is bound to fail. We already
found this in Sec. IV, where we considered the limit K2=0
using the representation in Eq. �42�. Here, the analogous re-
striction is Q� =0. Under these circumstances, equivalent to
K� 1=K� 2, the � function is trivially invariant. However, the
boson loses its field character with ��0� not scaling at all.

Let us attempt a different remedy by relaxing the restric-

tion slightly and consider K̂1= K̂2. This is equivalent to Q
= 
k1−k2
. Here, the � function will not be form invariant
because it transforms to

FIG. 3. Under the restriction K̂1= K̂2, the boson momentum q�
can still have a nonzero modulus, but it loses its angular freedom
and is forced to point exactly normal to the Fermi surface. This
constraint does not allow the boson field � to transform in a homo-
geneous fashion.
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��� − s1/z
k1 − k2
� = ��� − s�1−z�/z
k1� − k2�
� .

Undaunted, we make the further restriction to z=1, in which
case the � function is form invariant, and now less trivially
so. Unfortunately, we still have the problem that the boson
field scales unnaturally: ��
Q� 
 ,�q ,�q�=��
k1
−k2
 , const,const�. As show in Fig. 3, the boson momentum
vector, which is defined as the vector joining the tips of K� 1

and K� 2, lies directly parallel to K̂1= K̂2. When we force K̂1

= K̂2, the boson momentum loses its angular freedom and
thus no longer scales homogeneously.

One might wonder why we are being so strict about the
form of the field transformation when it seems like the other
scheme in Eq. �42�,

��

ddKddq�
̄K� +q�
K� �q�g�K� ,q����� − 
K2
�� �64�

also violates this principle. In fact, the fermion is not re-
quired to be a homogeneous function of momentum anyway.
All that we need from Eq. �23� is


�KF + s−1k�� = s3/2
��KF + k�� . �65�

The incoming fermion in Eq. �64� is clearly of this form,
whereas the outgoing fermion can be written as


̄�
K� + q� 
� � 
̄�KF + s−1k� + s−1q� cos �Kq� . �66�

In this form, we know this expression is equivalent to


̄�KF + s−1k� + s−1q� cos �Kq� = s3/2
̄��KF + k� + q� cos �Kq� .

�67�

Thus, both fermions in Eq. �64� transform as Eq. �23�. Fi-
nally, ��q� , i�� obviously scales according to Eq. �63� �and
Eq. �11��. Therefore, in Eq. �64� we know how all fields
transform under Eq. �46�, so the representation in Eq. �42�,
suffers from none of the shortcomings we identified for Eq.
�43�.

With this new understanding, we should also check that in
the pure-fermion problem the field 
�K4� transforms in a
consistent manner. To see this, we need to keep a few more
higher-order terms than what we showed earlier,


K� 4
2 = K1
2 + K2

2 + K3
2 + 2K� 1 · K� 2 − 2K� 1 · K� 3 − 2K� 2 · K� 3

� 2KF�k1 + k2 + k3 + 3KF/2� + 2KFK̂1 · K̂2�k1 + k2 + KF�

− 2KFK̂1 · K̂3�k1 + k3 + KF� − 2KFK̂2 · K̂3�k2 + k3 + KF�

= 2KF�KF�K̂1 · K̂2 − K̂1 · K̂3 − K̂2 · K̂3 + 3/2�

+ k1�1 + K̂1 · �K̂2 − K̂3�� + k2�1 + K̂2 · �K̂1 − K̂3��

+ k3�1 − K̂3 · �K̂1 + K̂2���

= 2KF�KF
�� 
2/2

+ k1�1 + K̂1 · �K̂2 − K̂3�� + k2�1 + K̂2 · �K̂1 − K̂3��

+ k3�1 − K̂3 · �K̂1 + K̂2��� , �68�

where we used Eq. �31�. In the special case where K̂1= K̂3,
corresponding to forward scattering, we have


K� 4
 � KF + k2 + �k1 − k3�K̂1 · K̂2. �69�

This shows that


�
K� 4
� = 
�KF + s−1k2� + s−1�k1� − k3��K̂1 · K̂2� , �70�

which is precisely the scaling form appropriate for a fermion
in Eq. �23�. In the same way, it is easy to show that the

fermion scales appropriately for the cases K̂2= K̂3 and K̂1

=−K̂2. In these cases we have


K� 4
 � KF + k1 + �k2 − k3�K̂1 · K̂3, �71�


K� 4
 � KF + k3 + �k2 − k1�K̂1 · K̂3, �72�

respectively. Thus, all the results of Shankar remain valid.
Finally, it may at first seem puzzling that the scaling of

the constraint in Eq. �62� is so problematic since we were
able to find a simple solution in the pure-fermion problem
involving S4

f . There, the constraint involved K4= 
K� 3−K� 2

−K� 1
−KF, which measures a deviation from the Fermi sur-
face. However, in the representation of the boson-fermion
coupling in Eq. �43�, the constraint involves Q� =K� 2−K� 1
which is not a deviation from the Fermi surface and as writ-
ten, can take any value between 0 and 2KF; see Eq. �59�.

To summarize, 
�K4� scales like a fermion, 
�K2� scales
like a fermion, but ��Q� � does not scale like a boson. We
therefore cannot use Eq. �43� to represent the boson-fermion
coupling because we do not have knowledge of the boson
field scaling under such a coordinate transformation.

VI. PATCHING SCHEME

When z�1, the scheme we developed in Sec. IV no
longer works. The problem is that under mode elimination
and rescaling, the constraint function changes its form,

���/s − 
K� 2
� � ���/s − 
k + q cos �Kq
�

= ��� − s
k + q cos �Kq
�

= ��� − 
k� + s�z−1�/zq� cos �Kq
� , �73�

where k�=sk and q�=s1/zq. When z�1, we cannot reliably
determine the flow of the coupling because the structure of
the interaction itself has changed under this RG transforma-
tion. This is the same dilemma encountered in the pure-
fermion problem in Eq. �32�. Also, notice that writing S3

bf in
terms of an integral over K� 1 and K� 2, rather than K� and q� , will
not cure the problem. In the previous section we explained
why this is the case, even for z=1.

For these reasons, when z�1 we adopt a different method
where we scale toward a specific point on the Fermi surface.
Although the details differ, this is similar in spirit to some
previous work on the renormalization of the gauge-spinon
problem.9–12

In d=2, consider the annulus in momentum space defined
by −��k��. Now subdivide the annulus into N� regions
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of angular size ��: N���=2�⇒��=2�� /KF. Each patch
will be approximately of size ��2. The same idea is easily
generalized to d�2. This should be familiar from multidi-
mensional bosonization27 and functional RG;16–19 we refer
the reader to those papers for further details.

The momentum integral for the quadratic part of the fer-
mionic action, S2

f , can now be decomposed into a sum over
N� identical patches,

S2
f = ��

ddKd�
̄�i� − �K� �
 = �
p=1

N� ��

ddkpd�p
̄p�i�p − �k�p
�
p.

�74�

Here, k�p= �k�p,� ,kp,�� is a local coordinate within each patch
which has components parallel and perpendicular to some
reference frame. We define this special local reference direc-
tion to be the normal vector to the Fermi surface at the patch
origin. Thus, k�� is tangent to the Fermi surface at the patch
origin. Within each patch, functions of momentum can be
expanded around the patch origin. Consider, for example, the
patch centered at K� = �0,KF� which we will label as patch p
=1, and where we have specialized to d=2 for concreteness.
Near this point, the dispersion of a perfectly parabolic band
can be expressed in terms of local patch coordinates as fol-
lows:

�K� ��0,KF� �
1

2m
��Kx

2 + Ky
2�
�0,KF� + 2Kx
�0,KF��Kx − 0�

+ 2Ky
�0,KF��Ky − KF� +
1

2m

1

2
2
�0,KF��Kx − 0�2

+
1

2m

1

2
2
�0,KF��Ky − KF�2	 −

KF
2

2m

� vFk1,� +
k1,�

2

2m

= vFk1,� +
vFk1,�

2

2KF

� vFk1,� + ak1,�
2 , �75�

where for this particular patch, k1,� �Ky −KF, and k1,��Kx.
We have also defined vF�KF /m and a�vF / �2KF�
=1 / �2m�. As a sum over all the patches that enclose the
Fermi surface, the quadratic part of the action can now be
written as

S2
f = �

p=1

N� ��

ddkpd�p
̄p�i�p − vFkp,� − ak�p,�
2 �
p.

Note that the concepts of parallel and perpendicular only
make sense with respect to a perfectly flat surface, or the
normal to a specific point on a curved surface. We take this
specific point to be the center of the patch. Momentum com-
ponents in the same direction as the vector normal to the
Fermi surface at the patch origin are considered “parallel,”
whereas momenta tangent to the Fermi surface are labeled
“perpendicular.” We caution that different conventions exist

in the literature for what is deemed parallel or perpendicular.
We adopt the convention of Ref. 11.

Within each patch, the momentum integral is limited to a
box of dimension � in every direction. For example, in d
=2 this means

��

d2k � �
−�

�

dk��
−�

�

dk�. �76�

We have dropped the patch indices since we assume all
patches are identical in the sense that variables scale in the
same manner in every patch. In the absence of van Hove
singularities and nesting instabilities, this is a reasonable
assumption.28

Within this patching formalism, and when we consider
only q� �0 so that the entire boson phase space can be re-
stricted to a single patch, the quadratic part of the bosonic
action can be written in straightforward fashion. To be con-
crete, consider z=3,

S2
b = ��

ddqd����q��
2 + q�

2 +
��


q��
2 + q�

2�� .

Within each patch, bosonic momenta q� and fermionic mo-
menta k� are all measured with respect to the same single
point, the patch origin. Consequently, bosonic and fermionic
momenta scale the same way, that is

�k��� = �q��� , �77�

�k�� = �q�� . �78�

See Fig. 4. Whether we label momenta by k� or q� is thus
immaterial since they scale identically; this is in stark con-
trast to the scheme developed in Sec. IV for the case z=1.

Of course, the possibility exists that �k��� �k���. In fact,
we will now argue why they cannot be the same when z
�1.

The fixed point is defined by constructing the scaling
scheme so that the quadratic part of the action, S2

b+S2
f , is

scale invariant. Scale invariance of S2
f requires

q⊥

k⊥

k

q

FIG. 4. Local coordinate system in patch p=1 whose center is
located at K� = �0,KF�. Bosonic and fermionic momenta now scale
identically.
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��� = �vF� + �k�� = �a� + 2�k��� �79�

while scale invariance of S2
b necessitates

��� + ��� = ��q��
2 + q�

2�z/2� . �80�

Next, we observe that since we want to scale bosons and
fermions simultaneously, it is sensible to give their energies
equal scaling dimensions which we denote by

�E� � ��� = ��� . �81�

The conditions from the quadratic parts of the action now
become

�E� = �vF� + �k�� = �a� + 2�k��� , �82�

�E� + ��� = ��q��
2 + q�

2�z/2� . �83�

At this point we demand that the dispersion relations of low-
energy excitations be preserved under scaling. For fermions
near the Fermi surface, energy must be a linear function of
momentum. We thus set �vF�=0 to establish

�E� = �k�� = �a� + 2�k��� . �84�

This is furthermore justified by the fact that
ak�

2

vFk�
=

k�
2

KFk�
�1

provided k�,� ���KF. The “curvature” term is a small cor-
rection. Thus, parallel momenta scale like energy.

We now use Eqs. �78� and �84� in Eq. �83� to determine
the dimension of the perpendicular momentum,

��E� = ��q��
2 + vF

2E2�z/2� ⇒ �q��� = �
��E�2/z − vF
2E2� .

�85�

In the infrared limit, this becomes

�q��� = ��E� + ����/z �86�

because E2/z�E2 when z�1. To preserve the bosonic dis-
persion �i.e., ��qz�, we set ���=0, obtaining

�q��� = �E�/z . �87�

Now we plug this result into Eq. �84� to find the dimension
of a,

�E� = �a� + 2�E�/z ⇒ �a� = �1 − 2/z��E� . �88�

Finally, we are free to choose the value of �E�, which we set
equal to unity for convenience; any other value will only
induce the same multiplicative prefactor on all dimensions,
but relative dimensions will be unaffected. To summarize,

�E� = ��� = ��� = 1,

�k�� = �q�� = �E� = 1,

�k��� = �q��� = �E�/z = 1/z ,

�a� = 1 − 2/z ,

�vF� = 0,

��� = 0. �89�

Note that for z=3 the dimension of �k��� appears to suggest
that the fermionic band structure changes under scaling. This
is an illusion since the parameter a, which is a measure of the
curvature, is allowed to scale in order to precisely compen-
sate the scaling of k��, thus ensuring that the band remains
invariant.

Plugging these values into the quadratic action yields the
dimensions of the fields,

�
� = −
3z + d − 1

2z
, �90�

��� = −
2z + d + 1

2z
. �91�

We now have enough information to determine the dimen-
sion of the boson-fermion coupling,

S3
bf = �

patches
� ddk1ddk2ddqd�2d�1d�


 g�k�2,k�1,q� ,�2,�1,��
̄�2�
�1���q� ,��


��d−1��k�2,� − k�1,� − q�����k2,� − k1,� − q�����2 − �1 − ��


��� − 
k�2,�
���� − 
k2,�
���� − 
k�1,�
����

− 
k1,�
���� − 
q��
���� − 
q�
� . �92�

Note that this is slightly less general than could be the case.
We have restricted our consideration to nearly forward scat-
tering processes which means that q� �0 or, equivalently, k�1

and k�2 belong to the same patch. Interpatch processes, such
as the BCS instability, are not captured.

Since we are scaling toward a single point, momentum
and energy conserving delta functions and cutoff constraints
factorize nicely. Integrating against the delta functions yields

S3
bf = �

patches
��

ddkddqd�d�g�k�,q� ,�,��
̄�k� + q� ,� + ��



�k�,����q� ,����� − 
k�� + q��
���� − 
k� + q�
� ,

�93�

where we have placed some of the constraints in the limits of
integration. Unlike what happened in Sec. IV, there is no
difference in eliminating boson or fermionic variables due to
Eqs. �89�. Here it is arbitrary whether we call momentum k�
or q� since in the patching scheme they scale the same way.
Additionally, the factorization of parallel and perpendicular
components of momenta means the arguments of the fields
scale in a straightforward fashion. Indeed, after mode elimi-
nation and rescaling we find,
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S3
bf = g �

patches
��

s−1s−�d−1�/zddk�s−1s−�d−1�/zddq�


s−1d��s−1d��s�3z+d−1�/�2z�
̄�s�3z+d−1�/�2z�
�s�2z+d+1�/�2z�


�����/s1/z − s−1/z
k��� + q��� 
����/s − s−1
k�� + q��
�

= s�3−d�/�2z�g �
patches

��

ddk�ddq�d��d��
̄�
���


��� − 
k��� + q��� 
���� − 
k�� + q��
� , �94�

where we have Taylor expanded g and kept the most relevant
�constant� piece. In this patching scheme, the constraints and
fields transform in a simple way, so we can simply read off
the dimension of the coupling,

�g� =
3 − d

2z
. �95�

The relevance or irrelevance of this coupling is in some
sense arbitrary outside the context of a specific physical
problem. The value of �g� depends crucially on the dimen-
sions ��� and �
�, and these will be determined by the prob-
lem under consideration. For example, in the context of mag-
netic phases of the Kondo lattice, see Refs. 22–24.

Several important comments are now in order:
�1� the result in Eq. �95� is identical to Eq. �55� when z

=1. Therefore, the patching scheme developed in this section
yields an answer equivalent to the extension of Shankar’s
scheme presented in Sec. IV using global coordinates. While
the latter approach is perhaps more intuitive, it is not justifi-
able when z�1. On the other hand, the patching scheme
requires same careful interpretation, as discussed below, but
is consistent for any value of z.

�2� It is necessary to give the curvature parameter, a, a
nonzero scaling dimension in order to compensate for the
way that k� scales. Rest assured, however, that �ak�

2 �
= �vFk��= ��� so that the fermion band is kept invariant. In
this way, we do not need to scale the number of patches.

�3� It may seem as if the bosons have become anisotropic
but this is an illusion due to the nature of the local coordi-
nates we have chosen. Because of the sum over patches, we
have included an equal weighting of q� components in all
directions, even though locally we only keep q�� within each
patch. Of course, it does mean that in the low-energy limit
bosons become locally tangent to the Fermi surface for fixed
value of fermionic momentum K� . This is not surprising and
was noticed long ago.9,11 We even saw hints of this in Sec.
IV. In that scaling scheme k�=sk and q�=s1/zq. When z�1,
the length of 
q� 
 scales more slowly than the deviation from
the Fermi surface, k. As a result, in the low-energy limit, the
boson momentum will tend to lie tangent to the Fermi sur-
face.

�4� In the patching formalism, the dimension of the boson
field in Eq. �91� derives from

���q��,q��� ,i��� = s�����s−�q��q��,s
−�q���q��� ,s−���i���

and similarly for the fermion field. Once again this takes the
form of a generalized homogeneous function but is different

from the type of scaling in Eq. �11� and �23�. For more on
generalized homogeneous functions, see Ref. 29.

�5� The form of the interaction we consider is limited to
nearly forward scattering �q�0� intrapatch processes. Inter-
patch processes are not captured and this makes comparisons
with the pure-fermion RG somewhat delicate. Consider a
four-fermion interaction with incoming momenta K� 1 and K� 2,
and outgoing momenta K� 3 and K� 4. The difference between
incoming and outgoing momenta at the left vertex can be
small, say K� 3−K� 1�q� left vertex�0. This can match up with
small momentum transfer on the right: K� 4−K� 2�q� right vertex
�0. However, this says nothing about the relationship be-
tween K� 1 and K� 2. Indeed, K� 1 and K� 2 can each independently
take any value around the Fermi surface, i.e., 
K� 2−K� 1
 can
take any value between 0 and 2KF. Thus, “forward scatter-
ing” processes in a boson-fermion formalism are not neces-
sarily equivalent to forward scattering processes in a four-
fermion formalism. The latter �four-fermion coupling�
involves two patches, whereas the former �boson-fermion
coupling� involves only one patch. In other words, the di-
mension of uf is not simply given by �g2�.

�6� If we were to include self-energy corrections into S2
f

and establish this as the new fixed point, the values of the
dimension assignments would change, but the philosophy
would be the same. For example, in the gauge-spinon11 and
ferromagnetic Kondo lattice systems,24 gapless overdamped
z=3 bosons lead to a characteristic electron self-energy
������2/3 in d=2 and �����−� log � in d=3. We can de-

fine the new fixed-point action with S2
f =�
̄��d/z−vFk�

−ak�
2 �
. Using the same philosophy defined in this section,

we would assign

�E� = ��� = ��� = z/d ,

�k�� = �q�� = �E� = 1,

�k��� = �q��� = �E�/z = 1/d ,

�a� = 1 − 2/d ,

�vF� = 0,

��� = 0. �96�

This also leads to a change in the dimensions of the fields
and the couplings but the methodology is no different than
what has already been discussed above. See Ref. 24 for fur-
ther discussion.

�7� There is some debate in the literature about how to
properly scale the gauge-spinon model which corresponds to
z=3.9–12,30 The consistent scaling scheme within the patching
formalism we advocate here coincides with that of Ref. 11.

VII. CONCLUSION

This paper has developed an easy-to-use RG procedure
for theories containing both bosons and fermions with a
Fermi surface. We reviewed the global coordinate approach
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to the fermionic RG as formulated by Shankar, showed how
to generalize this formalism to include bosons with dynami-
cal exponent z=1, and explained why such an approach will
not work when z�1. We pointed out that a consistent
scheme must ensure that the kinematic constraints, which
result from the conservation of momentum and the effective-
field theory cutoffs, remain invariant to the RG transforma-
tion. In addition, field rescaling can only be properly identi-
fied in interaction terms when the coordinates of the field
transform in a known way, as specified by the quadratic part
of the action.

We also showed that, for z=1, the same results arise
within a patching scheme. Here the momentum space near
the Fermi surface is partitioned into patches. For z�1, the
patching scheme represents the only consistent RG approach
to mixed fermion-boson systems.

Coupled boson and fermion problems arise in a variety of
contexts. We have already mentioned the problems of itiner-
ant magnets which have directly motivated our work here, as
well as the subject of gauge fields coupled to fermions. In
addition, fermion-boson mixtures of cold atomic gases31 may
provide another interesting setting for this work. We hope the
RG program described here will be useful for related prob-
lems in other settings as well.
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